Live Chat

  • support 1
  • support 2
  • support 3



  • PT. AKSARA KENCANA PUTRA
    Puri Botanical - Mega Kebon Jeruk Block I 10 No. 60 - 61
    Jl. Joglo Raya, Jakarta Barat 11640 - Indonesia
    Tel. +62 21 58900427
            58900428 /5321890
    Fax. +62 21 58900430 / 5331890
    email : freshhoneynatural@yahoo.com
    herbal.adm1@freshhoney-herbs.com

  • fresh honey wikipedia

    From Wikipedia, the free encyclopedia
    Jump to: navigation, search
    Jars of honey and honeycomb
    Honey in honeycomb
    Traditional honey pot from North Korea

    Honey (English pronunciation: /ˈhʌni/) is a sweet food made by bees using nectar from flowers. The variety produced by honey bees (the genus Apis) is the one most commonly referred to and is the type of honey collected by beekeepers and consumed by humans. Honey produced by other bees and insects has distinctly different properties.

    Honey bees form nectar into honey by a process of regurgitation, and store it as a primary food source in wax honeycombs inside the beehive. Beekeeping practices encourage overproduction of honey so the excess can be taken from the colony.

    Honey gets its sweetness from the monosaccharides fructose and glucose, and has approximately the same relative sweetness as that of granulated sugar.[1][2] It has attractive chemical properties for baking, and a distinctive flavor that leads some people to prefer it over sugar and other sweeteners.[1] Most microorganisms do not grow in honey because of its low water activity of 0.6.[3] However, honey sometimes contains dormant endospores of the bacterium Clostridium botulinum, which can be dangerous to infants, as the endospores can transform into toxin-producing bacteria in the infant's immature intestinal tract, leading to illness and even death[4] (see Health hazards below).

    Honey has a long history of human consumption, and is used in various foods and beverages as a sweetener and flavoring. It also has a role in religion and symbolism. Flavors of honey vary based on the nectar source, and various types and grades of honey are available. It is also used in various medicinal traditions to treat ailments. The study of pollens and spores in raw honey (melissopalynology) can determine floral sources of honey.[5] Because bees carry an electrostatic charge, and can attract other particles, the same techniques of melissopalynology can be used in area environmental studies of radioactive particles, dust or particulate pollution.[6][7]

     

    Formation

    Honey is produced by bees as a food source. In cold weather or when fresh food sources are scarce, bees use their stored honey as their source of energy.[8] By contriving for bee swarms to nest in artificial hives, people have been able to semidomesticate the insects, and harvest excess honey. In the hive (or in a wild nest), there are three types of bee: a single female queen bee, a seasonally variable number of male drone bees to fertilize new queens, and some 20,000 to 40,000 female worker bees.[9] The worker bees raise larvae and collect the nectar that will become honey in the hive. Leaving the hive, they collect sugar-rich flower nectar and return.

    In the hive, the bees use their "honey stomachs" to ingest and regurgitate the nectar a number of times until it is partially digested.[10] The bees work together as a group with the regurgitation and digestion until the product reaches a desired quality. It is then stored in honeycomb cells. After the final regurgitation, the honeycomb is left unsealed. However, the nectar is still high in both water content and natural yeasts, which, unchecked, would cause the sugars in the nectar to ferment.[8] The process continues as bees inside the hive fan their wings, creating a strong draft across the honeycomb, which enhances evaporation of much of the water from the nectar.[8] This reduction in water content raises the sugar concentration and prevents fermentation. Ripe honey, as removed from the hive by a beekeeper, has a long shelf life, and will not ferment if properly sealed.[8]

    Physical properties

    The physical properties of honey vary, depending on water content, the type of flora used to produce it, temperature, and the proportion of the specific sugars it contains. Fresh honey is a supersaturated liquid, containing more sugar than the water can typically dissolve at ambient temperatures. At room temperature, honey is a supercooled liquid, in which the glucose will precipitate into solid granules. This forms a semisolid solution of precipitated sugars in a solution of sugars and other ingredients.

    The melting point of crystallized honey is between 40 and 50 °C (104 and 122 °F), depending on its composition. Below this temperature, honey can be either in a metastable state, meaning that it will not crystallize until a seed crystal is added, or, more often, it is in a "labile" state, being saturated with enough sugars to crystallize spontaneously.[11] The rate of crystallization is affected by the ratio of the main sugars, fructose to glucose, as well as the dextrin content. Temperature also affects the rate of crystallization, which is fastest between 13 and 17 °C (55 and 63 °F). Below 5 °C, the honey will not crystallize and, thus, the original texture and flavor can be preserved indefinitely.[12]

    Since honey normally exists below its melting point, it is a supercooled liquid. At very low temperatures, honey will not freeze solid. Instead, as the temperatures become colder, the viscosity of honey increases. Like most viscous liquids, the honey will become thick and sluggish with decreasing temperature. While appearing or even feeling solid, it will continue to flow at very slow rates. Honey has a glass transition between -42 and -51 °C (-44 and -60 °F). Below this temperature, honey enters a glassy state and will become a noncrystalline amorphous solid.[13][14]

    The viscosity of honey is affected greatly by both temperature and water content. The higher the humidity, the easier honey will flow. Above its melting point, however, water has little effect on viscosity. Aside from water content, the composition of honey also has little effect on viscosity, with the exception of a few types. At 25 °C (77 °F), honey with 14% humidity will generally have a viscosity of around 400 poise, while a honey containing 20% humidity will have a viscosity of around 20 poise. Viscosity increase due to temperature occurs very slowly at first. A honey containing 16% humidity, at 70 °C (158 °F), will have a viscosity of around 2 poise, while at 30 °C (86 °F), the viscosity will be around 70 poise. As cooling progresses, honey will become more viscous at an increasingly rapid rate, reaching 600 poise around 14 °C (57 °F). However, while honey is very viscous, it has rather low surface tension.[15][16]

    A few types of honey have unusual viscous properties. Honey from heather or manuka display thixotropic properties. These types of honey enter a gel-like state when motionless, but then liquify when stirred.[17]

    Unlike many other liquids, honey has very poor thermal conductivity. Melting crystallized honey can easily result in localized caramelization if the heat source is too hot, or if it is not evenly distributed. However, honey will take substantially longer to liquify when just above the melting point than it will at elevated temperatures.[16]

    Since honey contains electrolytes, in the form of acids and minerals, it exhibits varying degrees of electrical conductivity. Measurements of the electrical conductivity are used to determine the quality of honey in terms of ash content.[16]

    The effect honey has on light is useful for determining the type and quality. Variations in the water content alter the refractive index of honey. Water content can easily be measured with a refractometer. Typically, the refractive index for honey will range from 1.504 at 13% humidity, to 1.474 at 25%. Honey also has an effect on polarized light, in that it will rotate the polarization plane. The fructose will give a negative rotation, while the glucose will give a positive one. The overall rotation can be used to measure the ratio of the mixture.[16][18]

    Honey has the ability to absorb moisture directly from the air, a phenomenon called hygroscopy. The amount of water the honey will absorb is dependent on the relative humidity of the air. This hygroscopic nature requires that honey be stored in sealed containers to prevent fermentation. Honey will tend to absorb more water in this manner than the individual sugars would allow on their own, which may be due to other ingredients which it contains.[18]

    In history, culture, and folklore

    Honey use and production has a long and varied history. In many cultures, honey has associations that go beyond its use as a food. Honey is frequently used as a talisman and symbol of sweetness.[citation needed]

    Ancient times

    Honey collection is an ancient activity. Humans apparently began hunting for honey at least 10,000 years ago, as evidenced by a cave painting in Valencia, Spain.[19] The painting is a Mesolithic rock painting, showing two female honey-hunters collecting honey and honeycomb from a wild bee nest. The two women are depicted in the nude, carrying baskets, and using a long, wobbly ladder to reach the wild nest.

    In ancient Egypt, honey was used to sweeten cakes and biscuits, and was used in many other dishes. Ancient Egyptian and Middle Eastern peoples also used honey for embalming the dead.[20] Pliny the Elder devotes considerable space in his book Naturalis Historia to the bee and honey, and its many uses. The fertility god of Egypt, Min, was offered honey.[21]

    The art of beekeeping appeared in ancient China for a long time and hardly traceable to its origin. In the book "Golden Rules of Business Success" written by Fan Li (or Tao Zhu Gong) during the Spring and Autumn Period, there are some parts mentioning the art of beekeeping and the importance of the quality of the wooden box for bee keeping that can affect the quality of its honey.

    Honey was also cultivated in ancient Mesoamerica. The Maya used honey from the stingless bee for culinary purposes, and continue to do so today. The Maya also regard the bee as sacred (see Mayan stingless bees of Central America).

    Some cultures believed honey had many practical health uses. It was used as an ointment for rashes and burns, and to help soothe sore throats when no other medicinal practices were available.

    Religious significance

    In Hinduism, honey (Madhu) is one of the five elixirs of immortality (Panchamrita). In temples, honey is poured over the deities in a ritual called Madhu abhisheka. The Vedas and other ancient literature mention the use of honey as a great medicinal and health food.

    In Jewish tradition, honey is a symbol for the new year, Rosh Hashanah. At the traditional meal for that holiday, apple slices are dipped in honey and eaten to bring a sweet new year. Some Rosh Hashanah greetings show honey and an apple, symbolizing the feast. In some congregations, small straws of honey are given out to usher in the new year.

    The Hebrew Bible contains many references to honey. In the Book of Judges, Samson found a swarm of bees and honey in the carcass of a lion (14:8). The Book of Exodus famously describes the Promised Land as a "land flowing with milk and honey" (33:3). However, the claim has been advanced that the original Hebrew (devash) actually refers to the sweet syrup produced from the juice of dates.[22][23] Pure honey is considered kosher even though it is produced by a flying insect, a nonkosher creature; other products of nonkosher animals are not kosher.[24]

    In Buddhism, honey plays an important role in the festival of Madhu Purnima, celebrated in India and Bangladesh. The day commemorates Buddha's making peace among his disciples by retreating into the wilderness. The legend has it that while he was there, a monkey brought him honey to eat. On Madhu Purnima, Buddhists remember this act by giving honey to monks. The monkey's gift is frequently depicted in Buddhist art.

    In the Christian New Testament, Matthew 3:4, John the Baptist is said to have lived for a long period of time in the wilderness on a diet consisting of locusts and wild honey.

    In Islam, there is an entire Surah in the Qur'an called al-Nahl (the Honey Bee). According to hadith, Prophet Muhammad strongly recommended honey for healing purposes.[25] Qur'an promotes honey as a nutritious and healthy food. Below is the English translation of those specific verses.

    And your Lord inspired the female bee(s), saying: "Take you habitations in the mountains and in the trees and in what they erect. (68) Then, eat of all fruits, and follow the ways of your Lord made easy (for you)." There comes forth from their bellies, a drink of varying colour wherein is healing for men. Verily, in this is indeed a sign for people who think.[26]

    In western culture

    A jar of honey with honey dipper

    The word "honey", along with variations like "honey bun" and the abbreviation "hon", has become a term of endearment in most of the English-speaking world. In some places it is used for loved ones; in others, such as Australia, the Southern United States and Baltimore, Maryland, it is used when addressing casual acquaintances or even strangers.

    Also, in many children’s books, bears are depicted as eating honey (e.g., Winnie the Pooh), though most bears actually eat a wide variety of foods, and bears seen at beehives are usually more interested in bee larvae than honey.[27] In some European languages, even the word for bear (e.g. in Russian medvéd, in Czech medvěd, in Serbian medved, in Bosnian medvjed and in Croatian medvjed) is coined from the noun meaning honey and the verb meaning to know, literally "the one who knows where honey lies". Honey is sometimes sold in bear-shaped jars or squeeze bottles.

    Collecting honey

    Honey is collected from wild bee colonies, or from domesticated beehives. Wild bee nests are sometimes located by following a honeyguide bird.

    Collecting honey is typically achieved by using smoke from a bee smoker to pacify the bees; this causes the bees to attempt to save the resources of the hive from a possible forest fire, and makes them far less aggressive. The honeycomb is removed from the hive and the honey is extracted from that, often using a honey extractor. The honey is then filtered.

    Modern uses

    [edit] As a food and in cooking

    The main uses of honey are in cooking, baking, as a spread on bread, and as an addition to various beverages, such as tea, and as a sweetener in some commercial beverages. According to the The National Honey Board (a USDA-overseen organization), "honey stipulates a pure product that does not allow for the addition of any other substance...this includes, but is not limited to, water or other sweeteners".[28] Honey barbecue and honey mustard are common and popular sauce flavors.

    Honey is the main ingredient in the alcoholic beverage mead, which is also known as "honey wine" or "honey beer". Historically, the ferment for mead was honey's naturally occurring yeast. Honey is also used as an adjunct in some beers.

    Nutrition

    Honey
    Nutritional value per 100 g (3.5 oz)
    Energy 1,272 kJ (304 kcal)
    Carbohydrates 82.4 g
    - Sugars 82.12 g
    - Dietary fiber 0.2 g
    Fat 0 g
    Protein 0.3 g
    Water 17.10 g
    Riboflavin (Vit. B2) 0.038 mg (3%)
    Niacin (Vit. B3) 0.121 mg (1%)
    Pantothenic acid (B5) 0.068 mg (1%)
    Vitamin B6 0.024 mg (2%)
    Folate (Vit. B9) 2 μg (1%)
    Vitamin C 0.5 mg (1%)
    Calcium 6 mg (1%)
    Iron 0.42 mg (3%)
    Magnesium 2 mg (1%)
    Phosphorus 4 mg (1%)
    Potassium 52 mg (1%)
    Sodium 4 mg (0%)
    Zinc 0.22 mg (2%)
    Shown is for 100 g, roughly 5 tbsp.
    Percentages are relative to US recommendations for adults.
    Source: USDA Nutrient database

    Honey is a mixture of sugars and other compounds. With respect to carbohydrates, honey is mainly fructose (about 38.5%) and glucose (about 31.0%),[1] making it similar to the synthetically produced inverted sugar syrup, which is approximately 48% fructose, 47% glucose, and 5% sucrose. Honey's remaining carbohydrates include maltose, sucrose, and other complex carbohydrates.[1] As with all nutritive sweeteners, honey is mostly sugars and contains only trace amounts of vitamins or minerals.[29][30] Honey also contains tiny amounts of several compounds thought to function as antioxidants, including chrysin, pinobanksin, vitamin C, catalase, and pinocembrin.[31][32][vague] The specific composition of any batch of honey depends on the flowers available to the bees that produced the honey.[29]

    Typical honey analysis.[33]

    Its glycemic index ranges from 31 to 78, depending on the variety.[34]

    Honey has a density of about 1.36 kilograms per litre (36% denser than water).[35]

    Isotope ratio mass spectrometry can be used to detect addition of corn syrup or sugar cane sugars by the carbon isotopic signature. Addition of sugars originating from corn or sugar cane (C4 plants, unlike the plants used by bees, which are predominantly C3 plants) skews the isotopic ratio of sugars present in honey, but does not influence the isotopic ratio of proteins; in an unadulterated honey, the carbon isotopic ratios of sugars and proteins should match. As low as 7% level of addition can be detected.[36][dead link]

    Classification

    Honey is classified by its floral source, and there are also divisions according to the packaging and processing used. There are also regional honeys. Honey is also graded on its color and optical density by USDA standards, graded on a scale called the Pfund scale, which ranges from 0 for "water white" honey to more than 114 for "dark amber" honey.[37]

    Floral source

    Generally, honey is classified by the floral source of the nectar from which it was made. Honeys can be from specific types of flower nectars, from indeterminate origin, or can be blended after collection.

    Blended

    Most commercially available honey is blended, meaning it is a mixture of two or more honeys differing in floral source, color, flavor, density or geographic origin.[38]

    Polyfloral

    Polyfloral honey, also known as wildflower honey,[39] is derived from the nectar of many types of flowers.[40] The taste may vary from year to year, and the aroma and the flavor can be more or less intense, depending on which bloomings are prevalent.[41]

    Monofloral

    Monofloral honey is made primarily from the nectar of one type of flower. Different monofloral honeys have a distinctive flavor and color because of differences between their principal nectar sources.[42] To produce monofloral honey, beekeepers keep beehives in an area where the bees have access to only one type of flower. In practice, because of the difficulties in containing bees, a small proportion of any honey will be from additional nectar from other flower types. Typical examples of North American monofloral honeys are clover, orange blossom, sage, tupelo, buckwheat, fireweed, and sourwood. Some typical European examples include thyme, thistle, heather, acacia, dandelion, sunflower, honeysuckle, and varieties from lime and chestnut trees. In North Africa, such as Egypt, examples include clover, cotton, and citrus (mainly orange blossoms).

    Honeydew honey

    Instead of taking nectar, bees can take honeydew, the sweet secretions of aphids or other plant sap-sucking insects. Honeydew honey is very dark brown in color, with a rich fragrance of stewed fruit or fig jam, and is not sweet like nectar honeys.[42] Germany's Black Forest is a well known source of honeydew-based honeys, as well as some regions in Bulgaria and Northern California in the United States. In Greece, pine honey (a type of honeydew honey) constitutes 60–65% of the annual honey production.[43] Honeydew honey is popular in some areas, but in other areas beekeepers have difficulty selling the stronger flavored product.

    The production of honeydew honey has some complications and dangers. The honey has a much larger proportion of indigestibles than light floral honeys, thus causing dysentery to the bees, resulting in the death of colonies in areas with cold winters. Good beekeeping management requires the removal of honeydew prior to winter in colder areas. Bees collecting this resource also have to be fed protein supplements, as honeydew lacks the protein-rich pollen accompaniment gathered from flowers.

    Classification by packaging and processing

    A variety of honey flavors and container sizes and styles from the 2008 Texas State Fair

    Generally, honey is bottled in its familiar liquid form. However, honey is sold in other forms, and can be subjected to a variety of processing methods.

    • Crystallized honey is honey in which some of the glucose content has spontaneously crystallized from solution as the monohydrate. Also called "granulated honey." Honey that has crystallized over time (or commercially purchased crystallized) in the home can be returned to a liquid state if stirred in a container sitting in warm water at 120 °F (approx 49 °C).[44]
    • Pasteurized honey is honey that has been heated in a pasteurization process (161°F (71.7°C) or higher). Pasteurization destroys yeast cells. It also liquefies any microcrystals in the honey, which delays the onset of visible crystallization. However, excessive heat exposure also results in product deterioration, as it increases the level of hydroxymethylfurfural (HMF) and reduces enzyme (e.g. diastase) activity. Heat also affects appearance (darkens the natural honey color), taste, and fragrance.[45]
    • Raw honey is honey as it exists in the beehive or as obtained by extraction, settling or straining, without adding heat (although some honey that has been "minimally processed" is often labeled as raw honey).[46] Raw honey contains some pollen and may contain small particles of wax. Local raw honey is sought after by allergy sufferers as the pollen impurities are thought to lessen the sensitivity to hay fever (see